Logo Search packages:      
Sourcecode: openssl version File versions

hw_aep.c

/* crypto/engine/hw_aep.c */
/*
 */
/* ====================================================================
 * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <stdio.h>
#include <openssl/bn.h>
#include <string.h>

#include <openssl/e_os2.h>
#if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__)
#include <sys/types.h>
#include <unistd.h>
#else
#include <process.h>
typedef int pid_t;
#endif

#include <openssl/crypto.h>
#include <openssl/dso.h>
#include <openssl/engine.h>
#include <openssl/buffer.h>

#ifndef OPENSSL_NO_HW
#ifndef OPENSSL_NO_HW_AEP
#ifdef FLAT_INC
#include "aep.h"
#else
#include "vendor_defns/aep.h"
#endif

#define AEP_LIB_NAME "aep engine"
#define FAIL_TO_SW 0x10101010

#include "hw_aep_err.c"

static int aep_init(ENGINE *e);
static int aep_finish(ENGINE *e);
static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
static int aep_destroy(ENGINE *e);

static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR hConnection);
static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection);
static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection);
static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use);

/* BIGNUM stuff */
static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
      const BIGNUM *m, BN_CTX *ctx);

static AEP_RV aep_mod_exp_crt(BIGNUM *r,const  BIGNUM *a, const BIGNUM *p,
      const BIGNUM *q, const BIGNUM *dmp1,const BIGNUM *dmq1,
      const BIGNUM *iqmp, BN_CTX *ctx);

/* RSA stuff */
#ifndef OPENSSL_NO_RSA
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa);
#endif

/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
      const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* DSA stuff */
#ifndef OPENSSL_NO_DSA
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
      BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
      BN_CTX *ctx, BN_MONT_CTX *in_mont);

static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
      const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
      BN_MONT_CTX *m_ctx);
#endif

/* DH stuff */
/* This function is aliased to mod_exp (with the DH and mont dropped). */
#ifndef OPENSSL_NO_DH
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
      const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
#endif

/* rand stuff   */
#ifdef AEPRAND
static int aep_rand(unsigned char *buf, int num);
static int aep_rand_status(void);
#endif

/* Bignum conversion stuff */
static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize);
static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
      unsigned char* AEP_BigNum);
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
      unsigned char* AEP_BigNum);

/* The definitions for control commands specific to this engine */
#define AEP_CMD_SO_PATH       ENGINE_CMD_BASE
static const ENGINE_CMD_DEFN aep_cmd_defns[] =
      {
      { AEP_CMD_SO_PATH,
        "SO_PATH",
        "Specifies the path to the 'aep' shared library",
        ENGINE_CMD_FLAG_STRING
      },
      {0, NULL, NULL, 0}
      };

#ifndef OPENSSL_NO_RSA
/* Our internal RSA_METHOD that we provide pointers to */
static RSA_METHOD aep_rsa =
      {
      "Aep RSA method",
      NULL,                /*rsa_pub_encrypt*/
      NULL,                /*rsa_pub_decrypt*/
      NULL,                /*rsa_priv_encrypt*/
      NULL,                /*rsa_priv_encrypt*/
      aep_rsa_mod_exp,     /*rsa_mod_exp*/
      aep_mod_exp_mont,    /*bn_mod_exp*/
      NULL,                /*init*/
      NULL,                /*finish*/
      0,                   /*flags*/
      NULL,                /*app_data*/
      NULL,                /*rsa_sign*/
      NULL                 /*rsa_verify*/
      };
#endif

#ifndef OPENSSL_NO_DSA
/* Our internal DSA_METHOD that we provide pointers to */
static DSA_METHOD aep_dsa =
      {
      "Aep DSA method",
      NULL,                /* dsa_do_sign */
      NULL,                /* dsa_sign_setup */
      NULL,                /* dsa_do_verify */
      aep_dsa_mod_exp,     /* dsa_mod_exp */
      aep_mod_exp_dsa,     /* bn_mod_exp */
      NULL,                /* init */
      NULL,                /* finish */
      0,                   /* flags */
      NULL                 /* app_data */
      };
#endif

#ifndef OPENSSL_NO_DH
/* Our internal DH_METHOD that we provide pointers to */
static DH_METHOD aep_dh =
      {
      "Aep DH method",
      NULL,
      NULL,
      aep_mod_exp_dh,
      NULL,
      NULL,
      0,
      NULL
      };
#endif

#ifdef AEPRAND
/* our internal RAND_method that we provide pointers to  */
static RAND_METHOD aep_random =
      {
      /*"AEP RAND method", */
      NULL,
      aep_rand,
      NULL,
      NULL,
      aep_rand,
      aep_rand_status,
      };
#endif

/*Define an array of structures to hold connections*/
static AEP_CONNECTION_ENTRY aep_app_conn_table[MAX_PROCESS_CONNECTIONS];

/*Used to determine if this is a new process*/
static pid_t    recorded_pid = 0;

#ifdef AEPRAND
static AEP_U8   rand_block[RAND_BLK_SIZE];
static AEP_U32  rand_block_bytes = 0;
#endif

/* Constants used when creating the ENGINE */
static const char *engine_aep_id = "aep";
static const char *engine_aep_name = "Aep hardware engine support";

static int max_key_len = 2176;


/* This internal function is used by ENGINE_aep() and possibly by the
 * "dynamic" ENGINE support too */
static int bind_aep(ENGINE *e)
      {
#ifndef OPENSSL_NO_RSA
      const RSA_METHOD  *meth1;
#endif
#ifndef OPENSSL_NO_DSA
      const DSA_METHOD  *meth2;
#endif
#ifndef OPENSSL_NO_DH
      const DH_METHOD     *meth3;
#endif

      if(!ENGINE_set_id(e, engine_aep_id) ||
            !ENGINE_set_name(e, engine_aep_name) ||
#ifndef OPENSSL_NO_RSA
            !ENGINE_set_RSA(e, &aep_rsa) ||
#endif
#ifndef OPENSSL_NO_DSA
            !ENGINE_set_DSA(e, &aep_dsa) ||
#endif
#ifndef OPENSSL_NO_DH
            !ENGINE_set_DH(e, &aep_dh) ||
#endif
#ifdef AEPRAND
            !ENGINE_set_RAND(e, &aep_random) ||
#endif
            !ENGINE_set_init_function(e, aep_init) ||
            !ENGINE_set_destroy_function(e, aep_destroy) ||
            !ENGINE_set_finish_function(e, aep_finish) ||
            !ENGINE_set_ctrl_function(e, aep_ctrl) ||
            !ENGINE_set_cmd_defns(e, aep_cmd_defns))
            return 0;

#ifndef OPENSSL_NO_RSA
      /* We know that the "PKCS1_SSLeay()" functions hook properly
       * to the aep-specific mod_exp and mod_exp_crt so we use
       * those functions. NB: We don't use ENGINE_openssl() or
       * anything "more generic" because something like the RSAref
       * code may not hook properly, and if you own one of these
       * cards then you have the right to do RSA operations on it
       * anyway! */
      meth1 = RSA_PKCS1_SSLeay();
      aep_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
      aep_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
      aep_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
      aep_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
#endif


#ifndef OPENSSL_NO_DSA
      /* Use the DSA_OpenSSL() method and just hook the mod_exp-ish
       * bits. */
      meth2 = DSA_OpenSSL();
      aep_dsa.dsa_do_sign    = meth2->dsa_do_sign;
      aep_dsa.dsa_sign_setup = meth2->dsa_sign_setup;
      aep_dsa.dsa_do_verify  = meth2->dsa_do_verify;

      aep_dsa = *DSA_get_default_method(); 
      aep_dsa.dsa_mod_exp = aep_dsa_mod_exp; 
      aep_dsa.bn_mod_exp = aep_mod_exp_dsa;
#endif

#ifndef OPENSSL_NO_DH
      /* Much the same for Diffie-Hellman */
      meth3 = DH_OpenSSL();
      aep_dh.generate_key = meth3->generate_key;
      aep_dh.compute_key  = meth3->compute_key;
      aep_dh.bn_mod_exp   = meth3->bn_mod_exp;
#endif

      /* Ensure the aep error handling is set up */
      ERR_load_AEPHK_strings();

      return 1;
}

#ifdef ENGINE_DYNAMIC_SUPPORT
static int bind_helper(ENGINE *e, const char *id)
      {
      if(id && (strcmp(id, engine_aep_id) != 0))
            return 0;
      if(!bind_aep(e))
            return 0;
      return 1;
      }       
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
#else
static ENGINE *engine_aep(void)
      {
      ENGINE *ret = ENGINE_new();
      if(!ret)
            return NULL;
      if(!bind_aep(ret))
            {
            ENGINE_free(ret);
            return NULL;
            }
      return ret;
      }

void ENGINE_load_aep(void)
      {
      /* Copied from eng_[openssl|dyn].c */
      ENGINE *toadd = engine_aep();
      if(!toadd) return;
      ENGINE_add(toadd);
      ENGINE_free(toadd);
      ERR_clear_error();
      }
#endif

/* This is a process-global DSO handle used for loading and unloading
 * the Aep library. NB: This is only set (or unset) during an
 * init() or finish() call (reference counts permitting) and they're
 * operating with global locks, so this should be thread-safe
 * implicitly. */
static DSO *aep_dso = NULL;

/* These are the static string constants for the DSO file name and the function
 * symbol names to bind to. 
*/
static const char *AEP_LIBNAME = NULL;
static const char *get_AEP_LIBNAME(void)
      {
      if(AEP_LIBNAME)
            return AEP_LIBNAME;
      return "aep";
      }
static void free_AEP_LIBNAME(void)
      {
      if(AEP_LIBNAME)
            OPENSSL_free((void*)AEP_LIBNAME);
      AEP_LIBNAME = NULL;
      }
static long set_AEP_LIBNAME(const char *name)
      {
      free_AEP_LIBNAME();
      return ((AEP_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
      }

static const char *AEP_F1    = "AEP_ModExp";
static const char *AEP_F2    = "AEP_ModExpCrt";
#ifdef AEPRAND
static const char *AEP_F3    = "AEP_GenRandom";
#endif
static const char *AEP_F4    = "AEP_Finalize";
static const char *AEP_F5    = "AEP_Initialize";
static const char *AEP_F6    = "AEP_OpenConnection";
static const char *AEP_F7    = "AEP_SetBNCallBacks";
static const char *AEP_F8    = "AEP_CloseConnection";

/* These are the function pointers that are (un)set when the library has
 * successfully (un)loaded. */
static t_AEP_OpenConnection    *p_AEP_OpenConnection  = NULL;
static t_AEP_CloseConnection   *p_AEP_CloseConnection = NULL;
static t_AEP_ModExp            *p_AEP_ModExp          = NULL;
static t_AEP_ModExpCrt         *p_AEP_ModExpCrt       = NULL;
#ifdef AEPRAND
static t_AEP_GenRandom         *p_AEP_GenRandom       = NULL;
#endif
static t_AEP_Initialize        *p_AEP_Initialize      = NULL;
static t_AEP_Finalize          *p_AEP_Finalize        = NULL;
static t_AEP_SetBNCallBacks    *p_AEP_SetBNCallBacks  = NULL;

/* (de)initialisation functions. */
static int aep_init(ENGINE *e)
      {
      t_AEP_ModExp          *p1;
      t_AEP_ModExpCrt       *p2;
#ifdef AEPRAND
      t_AEP_GenRandom       *p3;
#endif
      t_AEP_Finalize        *p4;
      t_AEP_Initialize      *p5;
      t_AEP_OpenConnection  *p6;
      t_AEP_SetBNCallBacks  *p7;
      t_AEP_CloseConnection *p8;

      int to_return = 0;
 
      if(aep_dso != NULL)
            {
            AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_ALREADY_LOADED);
            goto err;
            }
      /* Attempt to load libaep.so. */

      aep_dso = DSO_load(NULL, get_AEP_LIBNAME(), NULL, 0);
  
      if(aep_dso == NULL)
            {
            AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
            goto err;
            }

      if(   !(p1 = (t_AEP_ModExp *)     DSO_bind_func( aep_dso,AEP_F1))  ||
            !(p2 = (t_AEP_ModExpCrt*)   DSO_bind_func( aep_dso,AEP_F2))  ||
#ifdef AEPRAND
            !(p3 = (t_AEP_GenRandom*)   DSO_bind_func( aep_dso,AEP_F3))  ||
#endif
            !(p4 = (t_AEP_Finalize*)    DSO_bind_func( aep_dso,AEP_F4))  ||
            !(p5 = (t_AEP_Initialize*)  DSO_bind_func( aep_dso,AEP_F5))  ||
            !(p6 = (t_AEP_OpenConnection*) DSO_bind_func( aep_dso,AEP_F6))  ||
            !(p7 = (t_AEP_SetBNCallBacks*) DSO_bind_func( aep_dso,AEP_F7))  ||
            !(p8 = (t_AEP_CloseConnection*) DSO_bind_func( aep_dso,AEP_F8)))
            {
            AEPHKerr(AEPHK_F_AEP_INIT,AEPHK_R_NOT_LOADED);
            goto err;
            }

      /* Copy the pointers */
  
      p_AEP_ModExp           = p1;
      p_AEP_ModExpCrt        = p2;
#ifdef AEPRAND
      p_AEP_GenRandom        = p3;
#endif
      p_AEP_Finalize         = p4;
      p_AEP_Initialize       = p5;
      p_AEP_OpenConnection   = p6;
      p_AEP_SetBNCallBacks   = p7;
      p_AEP_CloseConnection  = p8;
 
      to_return = 1;
 
      return to_return;

 err: 

      if(aep_dso)
            DSO_free(aep_dso);
            
      p_AEP_OpenConnection    = NULL;
      p_AEP_ModExp            = NULL;
      p_AEP_ModExpCrt         = NULL;
#ifdef AEPRAND
      p_AEP_GenRandom         = NULL;
#endif
      p_AEP_Initialize        = NULL;
      p_AEP_Finalize          = NULL;
      p_AEP_SetBNCallBacks    = NULL;
      p_AEP_CloseConnection   = NULL;

      return to_return;
      }

/* Destructor (complements the "ENGINE_aep()" constructor) */
static int aep_destroy(ENGINE *e)
      {
      free_AEP_LIBNAME();
      ERR_unload_AEPHK_strings();
      return 1;
      }

static int aep_finish(ENGINE *e)
      {
      int to_return = 0, in_use;
      AEP_RV rv;

      if(aep_dso == NULL)
            {
            AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_NOT_LOADED);
            goto err;
            }

      rv = aep_close_all_connections(0, &in_use);
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CLOSE_HANDLES_FAILED);
            goto err;
            }
      if (in_use)
            {
            AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_CONNECTIONS_IN_USE);
            goto err;
            }

      rv = p_AEP_Finalize();
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_FINALIZE_FAILED);
            goto err;
            }

      if(!DSO_free(aep_dso))
            {
            AEPHKerr(AEPHK_F_AEP_FINISH,AEPHK_R_UNIT_FAILURE);
            goto err;
            }

      aep_dso = NULL;
      p_AEP_CloseConnection   = NULL;
      p_AEP_OpenConnection    = NULL;
      p_AEP_ModExp            = NULL;
      p_AEP_ModExpCrt         = NULL;
#ifdef AEPRAND
      p_AEP_GenRandom         = NULL;
#endif
      p_AEP_Initialize        = NULL;
      p_AEP_Finalize          = NULL;
      p_AEP_SetBNCallBacks    = NULL;

      to_return = 1;
 err:
      return to_return;
      }

static int aep_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
      {
      int initialised = ((aep_dso == NULL) ? 0 : 1);
      switch(cmd)
            {
      case AEP_CMD_SO_PATH:
            if(p == NULL)
                  {
                  AEPHKerr(AEPHK_F_AEP_CTRL,
                        ERR_R_PASSED_NULL_PARAMETER);
                  return 0;
                  }
            if(initialised)
                  {
                  AEPHKerr(AEPHK_F_AEP_CTRL,
                        AEPHK_R_ALREADY_LOADED);
                  return 0;
                  }
            return set_AEP_LIBNAME((const char*)p);
      default:
            break;
            }
      AEPHKerr(AEPHK_F_AEP_CTRL,AEPHK_R_CTRL_COMMAND_NOT_IMPLEMENTED);
      return 0;
      }

static int aep_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
      const BIGNUM *m, BN_CTX *ctx)
      {
      int to_return = 0;
      int   r_len = 0;
      AEP_CONNECTION_HNDL hConnection;
      AEP_RV rv;
      
      r_len = BN_num_bits(m);

      /* Perform in software if modulus is too large for hardware. */

      if (r_len > max_key_len){
            AEPHKerr(AEPHK_F_AEP_MOD_EXP, AEPHK_R_SIZE_TOO_LARGE_OR_TOO_SMALL);
            return BN_mod_exp(r, a, p, m, ctx);
      } 

      /*Grab a connection from the pool*/
      rv = aep_get_connection(&hConnection);
      if (rv != AEP_R_OK)
            {     
            AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_GET_HANDLE_FAILED);
            return BN_mod_exp(r, a, p, m, ctx);
            }

      /*To the card with the mod exp*/
      rv = p_AEP_ModExp(hConnection,(void*)a, (void*)p,(void*)m, (void*)r,NULL);

      if (rv !=  AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_MOD_EXP,AEPHK_R_MOD_EXP_FAILED);
            rv = aep_close_connection(hConnection);
            return BN_mod_exp(r, a, p, m, ctx);
            }

      /*Return the connection to the pool*/
      rv = aep_return_connection(hConnection);
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); 
            goto err;
            }

      to_return = 1;
 err:
      return to_return;
      }
      
static AEP_RV aep_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
      const BIGNUM *q, const BIGNUM *dmp1,
      const BIGNUM *dmq1,const BIGNUM *iqmp, BN_CTX *ctx)
      {
      AEP_RV rv = AEP_R_OK;
      AEP_CONNECTION_HNDL hConnection;

      /*Grab a connection from the pool*/
      rv = aep_get_connection(&hConnection);
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_GET_HANDLE_FAILED);
            return FAIL_TO_SW;
            }

      /*To the card with the mod exp*/
      rv = p_AEP_ModExpCrt(hConnection,(void*)a, (void*)p, (void*)q, (void*)dmp1,(void*)dmq1,
            (void*)iqmp,(void*)r,NULL);
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_MOD_EXP_CRT,AEPHK_R_MOD_EXP_CRT_FAILED);
            rv = aep_close_connection(hConnection);
            return FAIL_TO_SW;
            }

      /*Return the connection to the pool*/
      rv = aep_return_connection(hConnection);
      if (rv != AEP_R_OK)
            {
            AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); 
            goto err;
            }
 
 err:
      return rv;
      }
      

#ifdef AEPRAND
static int aep_rand(unsigned char *buf,int len )
      {
      AEP_RV rv = AEP_R_OK;
      AEP_CONNECTION_HNDL hConnection;

      CRYPTO_w_lock(CRYPTO_LOCK_RAND);

      /*Can the request be serviced with what's already in the buffer?*/
      if (len <= rand_block_bytes)
            {
            memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
            rand_block_bytes -= len;
            CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
            }
      else
            /*If not the get another block of random bytes*/
            {
            CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

            rv = aep_get_connection(&hConnection);
            if (rv !=  AEP_R_OK)
                  { 
                  AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_HANDLE_FAILED);             
                  goto err_nounlock;
                  }

            if (len > RAND_BLK_SIZE)
                  {
                  rv = p_AEP_GenRandom(hConnection, len, 2, buf, NULL);
                  if (rv !=  AEP_R_OK)
                        {  
                        AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED); 
                        goto err_nounlock;
                        }
                  }
            else
                  {
                  CRYPTO_w_lock(CRYPTO_LOCK_RAND);

                  rv = p_AEP_GenRandom(hConnection, RAND_BLK_SIZE, 2, &rand_block[0], NULL);
                  if (rv !=  AEP_R_OK)
                        {       
                        AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_GET_RANDOM_FAILED); 
            
                        goto err;
                        }

                  rand_block_bytes = RAND_BLK_SIZE;

                  memcpy(buf, &rand_block[RAND_BLK_SIZE - rand_block_bytes], len);
                  rand_block_bytes -= len;

                  CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
                  }

            rv = aep_return_connection(hConnection);
            if (rv != AEP_R_OK)
                  {
                  AEPHKerr(AEPHK_F_AEP_RAND,AEPHK_R_RETURN_CONNECTION_FAILED); 
        
                  goto err_nounlock;
                  }
            }
  
      return 1;
 err:
      CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
 err_nounlock:
      return 0;
      }
      
static int aep_rand_status(void)
{
      return 1;
}
#endif

#ifndef OPENSSL_NO_RSA
static int aep_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa)
      {
      BN_CTX *ctx = NULL;
      int to_return = 0;
      AEP_RV rv = AEP_R_OK;

      if ((ctx = BN_CTX_new()) == NULL)
            goto err;

      if (!aep_dso)
            {
            AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_NOT_LOADED);
            goto err;
            }

      /*See if we have all the necessary bits for a crt*/
      if (rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp)
            {
            rv =  aep_mod_exp_crt(r0,I,rsa->p,rsa->q, rsa->dmp1,rsa->dmq1,rsa->iqmp,ctx);

            if (rv == FAIL_TO_SW){
                  const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
                  to_return = (*meth->rsa_mod_exp)(r0, I, rsa);
                  goto err;
            }
            else if (rv != AEP_R_OK)
                  goto err;
            }
      else
            {
            if (!rsa->d || !rsa->n)
                  {
                  AEPHKerr(AEPHK_F_AEP_RSA_MOD_EXP,AEPHK_R_MISSING_KEY_COMPONENTS);
                  goto err;
                  }
 
            rv = aep_mod_exp(r0,I,rsa->d,rsa->n,ctx);
            if  (rv != AEP_R_OK)
                  goto err;
      
            }

      to_return = 1;

 err:
      if(ctx)
            BN_CTX_free(ctx);
      return to_return;
}
#endif

#ifndef OPENSSL_NO_DSA
static int aep_dsa_mod_exp(DSA *dsa, BIGNUM *rr, BIGNUM *a1,
      BIGNUM *p1, BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
      BN_CTX *ctx, BN_MONT_CTX *in_mont)
      {
      BIGNUM t;
      int to_return = 0;
      BN_init(&t);

      /* let rr = a1 ^ p1 mod m */
      if (!aep_mod_exp(rr,a1,p1,m,ctx)) goto end;
      /* let t = a2 ^ p2 mod m */
      if (!aep_mod_exp(&t,a2,p2,m,ctx)) goto end;
      /* let rr = rr * t mod m */
      if (!BN_mod_mul(rr,rr,&t,m,ctx)) goto end;
      to_return = 1;
 end: 
      BN_free(&t);
      return to_return;
      }

static int aep_mod_exp_dsa(DSA *dsa, BIGNUM *r, BIGNUM *a,
      const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
      BN_MONT_CTX *m_ctx)
      {  
      return aep_mod_exp(r, a, p, m, ctx); 
      }
#endif

/* This function is aliased to mod_exp (with the mont stuff dropped). */
static int aep_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
      const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
      {
      return aep_mod_exp(r, a, p, m, ctx);
      }

#ifndef OPENSSL_NO_DH
/* This function is aliased to mod_exp (with the dh and mont dropped). */
static int aep_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
      const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
      BN_MONT_CTX *m_ctx)
      {
      return aep_mod_exp(r, a, p, m, ctx);
      }
#endif

static AEP_RV aep_get_connection(AEP_CONNECTION_HNDL_PTR phConnection)
      {
      int count;
      AEP_RV rv = AEP_R_OK;

      /*Get the current process id*/
      pid_t curr_pid;

      CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);

      curr_pid = getpid();

      /*Check if this is the first time this is being called from the current
        process*/
      if (recorded_pid != curr_pid)
            {
            /*Remember our pid so we can check if we're in a new process*/
            recorded_pid = curr_pid;

            /*Call Finalize to make sure we have not inherited some data
              from a parent process*/
            p_AEP_Finalize();
     
            /*Initialise the AEP API*/
            rv = p_AEP_Initialize(NULL);

            if (rv != AEP_R_OK)
                  {
                  AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_INIT_FAILURE);
                  recorded_pid = 0;
                  goto end;
                  }

            /*Set the AEP big num call back functions*/
            rv = p_AEP_SetBNCallBacks(&GetBigNumSize, &MakeAEPBigNum,
                  &ConvertAEPBigNum);

            if (rv != AEP_R_OK)
                  {
                  AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_SETBNCALLBACK_FAILURE);
                  recorded_pid = 0;
                  goto end;
                  }

#ifdef AEPRAND
            /*Reset the rand byte count*/
            rand_block_bytes = 0;
#endif

            /*Init the structures*/
            for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
                  {
                  aep_app_conn_table[count].conn_state = NotConnected;
                  aep_app_conn_table[count].conn_hndl  = 0;
                  }

            /*Open a connection*/
            rv = p_AEP_OpenConnection(phConnection);

            if (rv != AEP_R_OK)
                  {
                  AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
                  recorded_pid = 0;
                  goto end;
                  }

            aep_app_conn_table[0].conn_state = InUse;
            aep_app_conn_table[0].conn_hndl = *phConnection;
            goto end;
            }
      /*Check the existing connections to see if we can find a free one*/
      for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
            {
            if (aep_app_conn_table[count].conn_state == Connected)
                  {
                  aep_app_conn_table[count].conn_state = InUse;
                  *phConnection = aep_app_conn_table[count].conn_hndl;
                  goto end;
                  }
            }
      /*If no connections available, we're going to have to try
        to open a new one*/
      for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
            {
            if (aep_app_conn_table[count].conn_state == NotConnected)
                  {
                  /*Open a connection*/
                  rv = p_AEP_OpenConnection(phConnection);

                  if (rv != AEP_R_OK)
                        {           
                        AEPHKerr(AEPHK_F_AEP_GET_CONNECTION,AEPHK_R_UNIT_FAILURE);
                        goto end;
                        }

                  aep_app_conn_table[count].conn_state = InUse;
                  aep_app_conn_table[count].conn_hndl = *phConnection;
                  goto end;
                  }
            }
      rv = AEP_R_GENERAL_ERROR;
 end:
      CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
      return rv;
      }


static AEP_RV aep_return_connection(AEP_CONNECTION_HNDL hConnection)
      {
      int count;

      CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);

      /*Find the connection item that matches this connection handle*/
      for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
            {
            if (aep_app_conn_table[count].conn_hndl == hConnection)
                  {
                  aep_app_conn_table[count].conn_state = Connected;
                  break;
                  }
            }

      CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);

      return AEP_R_OK;
      }

static AEP_RV aep_close_connection(AEP_CONNECTION_HNDL hConnection)
      {
      int count;
      AEP_RV rv = AEP_R_OK;

      CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);

      /*Find the connection item that matches this connection handle*/
      for(count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
            {
            if (aep_app_conn_table[count].conn_hndl == hConnection)
                  {
                  rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
                  if (rv != AEP_R_OK)
                        goto end;
                  aep_app_conn_table[count].conn_state = NotConnected;
                  aep_app_conn_table[count].conn_hndl  = 0;
                  break;
                  }
            }

 end:
      CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
      return rv;
      }

static AEP_RV aep_close_all_connections(int use_engine_lock, int *in_use)
      {
      int count;
      AEP_RV rv = AEP_R_OK;

      *in_use = 0;
      if (use_engine_lock) CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
      for (count = 0;count < MAX_PROCESS_CONNECTIONS;count ++)
            {
            switch (aep_app_conn_table[count].conn_state)
                  {
            case Connected:
                  rv = p_AEP_CloseConnection(aep_app_conn_table[count].conn_hndl);
                  if (rv != AEP_R_OK)
                        goto end;
                  aep_app_conn_table[count].conn_state = NotConnected;
                  aep_app_conn_table[count].conn_hndl  = 0;
                  break;
            case InUse:
                  (*in_use)++;
                  break;
            case NotConnected:
                  break;
                  }
            }
 end:
      if (use_engine_lock) CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
      return rv;
      }

/*BigNum call back functions, used to convert OpenSSL bignums into AEP bignums.
  Note only 32bit Openssl build support*/

static AEP_RV GetBigNumSize(AEP_VOID_PTR ArbBigNum, AEP_U32* BigNumSize)
      {
      BIGNUM* bn;

      /*Cast the ArbBigNum pointer to our BIGNUM struct*/
      bn = (BIGNUM*) ArbBigNum;

#ifdef SIXTY_FOUR_BIT_LONG
      *BigNumSize = bn->top << 3;
#else
      /*Size of the bignum in bytes is equal to the bn->top (no of 32 bit
        words) multiplies by 4*/
      *BigNumSize = bn->top << 2;
#endif

      return AEP_R_OK;
      }

static AEP_RV MakeAEPBigNum(AEP_VOID_PTR ArbBigNum, AEP_U32 BigNumSize,
      unsigned char* AEP_BigNum)
      {
      BIGNUM* bn;

#ifndef SIXTY_FOUR_BIT_LONG
      unsigned char* buf;
      int i;
#endif

      /*Cast the ArbBigNum pointer to our BIGNUM struct*/
      bn = (BIGNUM*) ArbBigNum;

#ifdef SIXTY_FOUR_BIT_LONG
      memcpy(AEP_BigNum, bn->d, BigNumSize);
#else
      /*Must copy data into a (monotone) least significant byte first format
        performing endian conversion if necessary*/
      for(i=0;i<bn->top;i++)
            {
            buf = (unsigned char*)&bn->d[i];

            *((AEP_U32*)AEP_BigNum) = (AEP_U32)
                  ((unsigned) buf[1] << 8 | buf[0]) |
                  ((unsigned) buf[3] << 8 | buf[2])  << 16;

            AEP_BigNum += 4;
            }
#endif

      return AEP_R_OK;
      }

/*Turn an AEP Big Num back to a user big num*/
static AEP_RV ConvertAEPBigNum(void* ArbBigNum, AEP_U32 BigNumSize,
      unsigned char* AEP_BigNum)
      {
      BIGNUM* bn;
#ifndef SIXTY_FOUR_BIT_LONG
      int i;
#endif

      bn = (BIGNUM*)ArbBigNum;

      /*Expand the result bn so that it can hold our big num.
        Size is in bits*/
      bn_expand(bn, (int)(BigNumSize << 3));

#ifdef SIXTY_FOUR_BIT_LONG
      bn->top = BigNumSize >> 3;
      
      if((BigNumSize & 7) != 0)
            bn->top++;

      memset(bn->d, 0, bn->top << 3);     

      memcpy(bn->d, AEP_BigNum, BigNumSize);
#else
      bn->top = BigNumSize >> 2;
 
      for(i=0;i<bn->top;i++)
            {
            bn->d[i] = (AEP_U32)
                  ((unsigned) AEP_BigNum[3] << 8 | AEP_BigNum[2]) << 16 |
                  ((unsigned) AEP_BigNum[1] << 8 | AEP_BigNum[0]);
            AEP_BigNum += 4;
            }
#endif

      return AEP_R_OK;
}     
      
#endif /* !OPENSSL_NO_HW_AEP */
#endif /* !OPENSSL_NO_HW */

Generated by  Doxygen 1.6.0   Back to index